Synthesis of size-controlled Fe3O4@SiO2 magnetic nanoparticles for nucleic acid analysis.

نویسندگان

  • Huanxiang Sun
  • Xin Zeng
  • Ming Liu
  • Sauli Elingarami
  • Guopeng Li
  • Bin Shen
  • Nongyue He
چکیده

We present a systematic study on the preparation, characteration and potential application of Fe3O4 and Fe3O4@SiO2 nanoparticles. Fe3O4 nanoparticles of controllable diameters were successfully synthesized by solvothermal system with tuning pH. The magnetic properties of nanoparticles were measured by vibration sample magnetometer. Fe3O4@ SiO2 nanoparticles were obtained via classic Stöber process. Streptavidin coated Fe3O4@SiO2 nanoparticles were prepared by covalent interaction. The quantity of streptavidin bound to nanoparticles was determined by UV-Vis spectrometer. To evaluate the binding efficiency and capacity of nucleic acid on nanoparticles, the capture of biotinylated oligonucleotide on streptavidin coated Fe3O4@SiO2 nanoparticles at different concentration was estimated by fluorescence detection. Both Fe3O4 and Fe3O4@SiO2 nanoparticles exhibited well crystallization and magnetic properties. The maximal amount of streptavidin immobilized onto the Fe3O4@SiO2 nanoparticles was 29.3 microg/mg. The saturation ratio of biotinylated oligonucleotides captured on streptavidin coated Fe3O4@SiO2 nanoparticles was 5 microM/mg within 20 minutes, indicating that FeO4@SiO2 nanoparticles immobilized by streptavidin were excellent carriers in nucleic acid analysis due to their convenient magnetic-separation property. Therefore, the synthesized Fe3O4 and Fe3O4@SiO2 nanoparticles with controllable size and high magnetic saturation have shown great application potentials in nucleic acid research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications

Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...

متن کامل

Synthesis and Characterization of Superparamagnetic Fe3O4@SiO2 Core-Shell Composite Nanoparticles

The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified Stöber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to im...

متن کامل

A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives

ABSTRACT The functionalization of silica-coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) using chlorosulfonic acid were afforded sulfonic acid-functionalized magnetic Fe3O4 nanoparticles (Fe3O4@SiO2-SO3H) that can be applied as an organic-inorganic hybrid heterogeneous catalyst. The used Fe3O4 magnetic nanoparticles are 18-30 nm sized that was rapidly functionalized and can be used as catalyst...

متن کامل

Fe3O4@SiO2@Propyl-ANDSA: A New Catalyst for the Synthesis of Substituted Pyrroles

Substituted pyrroles are an essential class of heterocyclic compounds. In this research, an efficient and eco-friendly method has been developed for the synthesis of pyrrole derivatives from the reaction of 2,5-hexanedione and primary amines. Magnetic nanoparticles supported on functionalized. 7-aminonaphthalene-1,3-disulfonic acid-functionalized. silica (Fe3O4@SiO2@Propyl–ANDSA) has been inves...

متن کامل

Comparative Study of Extracted Nucleic Acid from Escherichia coli by Two Methods Phenol-chloroform and Extraction Using Magnetic Nanoparticle

Background: The most important researches in molecular and genetic engineering fields are the finding of optimal methods for extraction of the genomic content of microorganisms and cells using them, can achieve the most amount and purity with the least time and cost. There are several methods for the extraction of bacterial DNA and the use of magnetic nanoparticles is one of the novel methods o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2012